MICROALBUMIN (Albumin in Urine)

REF: K-9570 M
MONOREAGENT PROCEDURE

In vitro diagnostic reagents for the quantitative determination of albumin in urine (MAU) by means of particle-enhanced turbidimetric immunoassay.

Diagnostic Relevance

Increased albumin excretion detectable only by sensitive immunoassay (microalbuminuria) has been used for some years as a predictor of incipient nephropathy and cardiovascular disease in diabetic patients. Microalbuminuria has also been associated with hypertension and increased risk of cardiovascular disease in non-diabetic patients. Microalbuminuria occurs in response to acute inflammatory conditions such as ischaemia, trauma, and thermal injury, surgery, pancreatitis, and inflammatory bowel disease. In many of these conditions albumin excretion increases within minutes or hours of the initiating stimulus and only last for 24 to 72 h. The degree of microalbuminuria is proportional to the severity of the inflammatory insult, is predictive of outcome, and is not associated with any other features of renal impairment.

Conventional dip-stick and acid precipitation tests for detecting protein in urine lack the sensitivity required to delineate this condition. Dip-stick may yield negative or trace results even when the albumin excretion rate is 10 or 20 times normal; and the rate must increase to 200 or 300 micrograms per minute (µg/min) before nephropathy becomes clinically apparent as persistent proteinuria. Interest in measuring subclinical elevations in the albumin excretion rate has focused on individuals with an already established diagnosis of diabetes or essential hypertension. Providing proper care is taken to minimise the influence of exercise and poor metabolic control of the albumin excretion rate, the urinary albumin level has proved to be an excellent predictor of the progression to overt nephropathy in both insulin-dependent and non-insulin dependent diabetes.

Principle

This MAU test is based upon the reactions between albumin and latex-covalently bound antibodies against human albumin. MAU values are determined photometrically.

Reagents

Each kit contains:

- **A**: Buffer - 45 mL of phosphate buffer, pH: 8.5, < 0,1 % sodium azide as preservative.
- **B**: Latex reagent – 5 mL of a suspension of latex microparticles covalently bound anti-albumin antibodies suspended in a neutral aqueous solution, and < 0,1 % sodium azide as preservative.
- **C**: Dilution Buffer – 15 ml of buffer TRIS with 0.1% gelatine, pH: 7.0. Preservative: sodium azide < 0,1 %.
- **D**: Calibrator – 1 mL. Human-based reference fluid. Preservative: sodium azide, 0.075 %. All raw materials of human origin used in the manufacture of this product showed no reactivity when tested for HBsAg, anti-HIV-1/2 and HCV with commercially available test methods. However, this product should be handled as though capable of transmitting infectious diseases.

Reagent Preparation

Working Reagent is prepared with 1 part of Latex Reagent and 9 parts of Buffer Reagent. Prepare a fresh WR based on its workload. Shake gently the reagents before pipetting.

Calibration Curve and Controls

Analytical Range up to 250 mg/L.

<table>
<thead>
<tr>
<th>Calibrator 1</th>
<th>100 µl of Biolatex MAU Calibrator*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrator 2</td>
<td>100 µl of Calibrator 1 + 100 µl of Dilution Buffer</td>
</tr>
<tr>
<td>Calibrator 3</td>
<td>100 µl of Calibrator 2 + 100 µl of Dilution Buffer</td>
</tr>
<tr>
<td>Calibrator 4</td>
<td>100 µl of Calibrator 3 + 100 µl of Dilution Buffer</td>
</tr>
<tr>
<td>Calibrator 5</td>
<td>100 µl of Calibrator 4 + 100 µl of Dilution Buffer</td>
</tr>
<tr>
<td>Calibrator 6</td>
<td>100 µl of Dilution Buffer</td>
</tr>
</tbody>
</table>

(*) See values on the label or on the insert. Multiply by the appropriate factor.

For quality control use Biolatex Control or other suitable control material. The control intervals and limits must be adapted to the individual laboratory requirements. Values obtained should fall within established limits. Each laboratory should establish corrective measures to be taken if values fall outside the limits. Control must be assayed and evaluated as for patient samples.

Storage and Stability

Reagents in the original vial is stable to the expiration date on the vial label when capped and
stored at +2 - +8°C. Immediately following the completion of an assay run, the reagent vial should be capped until next use in order to maximize curve stability. Once opened the reagent can be used within 1 month if stored tightly closed at +2 - +8°C after use. Do not freeze reagents. The MAU latex reagent should have a white, turbid appearance free of granular particulate. Visible agglutination or precipitation in specimens undiluted. If the result is positive, any turbidity may be a sign of deterioration, and the reagent should be discarded. The MAU buffer reagent should be clear and colourless. Any turbidity may be sign of deterioration and reagent should be discarded. WR is stable for up to two weeks at 4°C. It is recommended that each Laboratory prepares a fresh Working Reagent based on its workload.

Precautions

For in vitro diagnostic use only. Do not pipette by mouth. Reagents containing sodium azide must be handled with precaution. Sodium azide can form explosive azides with lead and copper plumbing. Since absence of infectious agents cannot be proven, all specimens and reagents obtained from human blood should always be handled with precaution using established good laboratory practices. Disposal of all waste material should be in accordance with local guidelines. As with other diagnostic tests, results should be interpreted considering all other test results and the clinical situation of the patient.

Materials required

Spectrophotometric analyser. Controls.

Specimens

Use 12 or 24 hour collection. centrifuge urine specimens. Screen these specimens using an albumin test strip. If the result is negative (approx. below 300 mg/L), analyse the specimens undiluted. If the result is positive, dilute the specimen with specific protein sample diluent to obtain a concentration below 250 mg/L. We recommend to dilute samples with dilution buffer.

Procedure

Wavelength	600 nm			
Temperature	37°C			
Cuvette	1 cm light path			
Measurement against distilled water blank. Bring the reagents at 37°C and pipette:				
Calibrator	2 µL	Sample	2 µL	Blank
Distilled Water	2 µL			

Work. Reagent 500 µL 500 µL 500 µL Mix and measure absorbance immediately (A1) incubate 4 min (37°C), after incubation read absorbance (A2).

Calculation

Plot the calibration curve and the sample concentration is obtained by interpolation the sample absorbance (A2-A1) in the calibration curve.

If is an one point calibration:

\[
\frac{(A2-A1)_{max} - (A2-A1)_{min}}{(A2-A1)_{max} - (A2-A1)_{min}} = \text{Calibrator Concentration}
\]

Specific Performance Characteristics

As is well known, the analytical characteristics of a clinical chemistry reagent depend on both the reagents and the instrument used. Multicenter studies indicate important differences in analytical characteristics among similar instruments. Therefore, the data must be calculated by each instrument.

Reference Values

For timed overnight urine collections an albumin excretion rate greater than 20 µg/min is considered to abnormal. These data are to be interpreted as a guide. Each laboratory should establish its own reference intervals.

Literature

BL, SL, C/Calahorra 4 – 6.26006 LO-Spain

December 07